学部・大学院

戻るデータサイエンス副専攻

文系大学生向けの
データサイエンス・STEM教育

データサイエンス副専攻とは

データサイエンス副専攻は、近年多くの産業分野で重要な役割を果たしているデータサイエンスに関する知識を体系立てて学べるようにデザインされた副専攻です。全学部の学生が履修できます。

​所定の科目群から20単位以上を修得した学生には、卒業時に修了書を授与します。

カリキュラム

データサイエンス副専攻の科目群は、高校の復習も兼ねた数学や統計学、背景となる自然科学、情報倫理を学ぶ科目から始まります。

中核科目である「データサイエンス入門」では、プログラミング言語 Python を使ってデータ分析プログラミングの基礎を学習し、IoT(モノのインターネット)などで得られた実データを使って回帰分析、クラスタリングなどの従来手法から機械学習、深層学習(ディープラーニング)などの最新手法までを学習します。

さらに「データサイエンス応用プロジェクトⅠ・Ⅱ」では、人工知能(AI)やバーチャルリアリティ(VR)を題材としたプロジェクト型演習を実施します。これらのSTEM教育を通じて、文系の学生がデータサイエンスをビジネスから環境問題にまで応用するための基礎力を養います。

【1年次】高校の復習を兼ねた数学や統計学などを学びます
【2年次】プログラミング言語Pythonを使用してデータ分析を実習します
【3・4年次】人工知能(AI)やバーチャルリアリティ(VR)を題材とした少人数グループによるプロジェクト型演習を実施します。

《Pick Up》データサイエンス応用プロジェクトⅠ・Ⅱ

少人数のグループで、バーチャルリアリティによる多次元データの可視化や人工知能(AI)によるドローン制御のプログラミングをテーマとしたプロジェクト型演習を実施します。各グループでバーチャルリアリティ、ドローンで何をやりたいかを自分たちで構想し、グループごとに異なるバーチャルリアリティコンテンツ、ドローン制御プログラムを作成します。

目指す人材像

データサイエンス副専攻では、文理融合的な視点でデータを統計的に分析できるだけでなく、課題を分析し人工知能(AI)などの手法を用いて課題解決へと結びつけられる人材を育成します。このため、統計学やプログラミングの基礎学習だけでなく、少人数グループによるプロジェクト型演習を通じた課題分析力・課題解決力の養成を重視したカリキュラムを採用しています。